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A systematic and fundamental approach to associating mixtures is presented. 
It is shown how the thermodynamic functions may be computed starting from 
a partition function based on the cluster concept such as occurs in chemical 
theory. The theory provides a basis for and an extension of the existing chemical 
theory of (continuous) association. It is applicable to arbitrary association 
schemes. Analysis of separate cases is not necessary. The assumptions that were 
made to allow the development were chosen such as to make the principle of 
reactivity valid. It is this same principle that links various theories: the chemical 
theory of continuous association, the lattice fluid hydrogen bonding model, and 
first-order perturbation theory. The equivalence between these theories in 
appropriate limits is shown in a general and rigorous way. The theory is 
believed to provide a practical framework for engineering modeling work. 
Binary interaction parameters can be incorporated. The association scheme is 
accounted for by a set of generic equations, which should facilitate robust 
implementation in computer programs. 

KEY WORDS: Association; phase equilibrium; statistical mechanics; parti- 
tion function; chemical engineering; equation of state; chemical equilibrium; 
cluster distribution. 

1. I N T R O D U C T I O N  

In fluids such as water, methanol, or acetic acid, clusters of molecules form 
due to strong intermolecular attractive forces. The lifetime of these clusters 
is long enough, depending on conditions, to be characterized by a variety 
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of spectroscopic techniques. The thermodynamic properties (e.g., boiling 
temperature, heat of vaporization) of associating fluids are profoundly 
different from nonassociating fluids, and mixtures of associating and non- 
associating fluids often form separate phases. 

Three main approaches have been developed for understanding the 
thermodynamic properties of associating fluids. 

In perturbation theo~3' the intermolecular potential is split into a 
reference part and a short-range, directional part which gives rise to 
association. Using the grand canonical ensemble, an equation of state can 
be derived which resembles Mayer's virial equation of state for non- 
associating fluids, the difference being that, for an associating fluid, two sets 
of virial coefficients occur, one set containing the nonassociating reference 
potential and the other set containing the full potential. The equations do 
not converge at low temperatures where most of the molecules are involved 
in clusters. As shown by Locket ~-~ and Wertheim, ~2-~24~ when the density 
of monomers is split into free and bonded monomer densities, the low- 
temperature convergence of the series is repaired. Though perturbation 
theory is used, the bonding state of the system is incorporated at an early 
stage. Using this approach, Wertheim obtained accurate equations for the 
thermodynamic functions and for the cluster size distribution. His theory 
was later simplified by Gubbins and co-workers ~ ~" ~3~ using only first-order 
thermodynamic perturbation theory (TPT-1), which allows tree-like 
clusters but no cycles. In this form, the theory has been incorporated into 
equations of state like SAFT (statistical associating fluid theory c ~" ~j ~) which 
have been applied successfully to phase equilibria of associating mixtures. 

In the second approach, usually referred to as chemical theory, the 
associating fluid is considered to be a mixture of various clusters (species) 
and free monomers. Chemical equilibrium constants are used to specify the 
relative densities of the various clusters, 

Ki -p /+l  (1) 
P/P i 

Heidemann and Prausnitz ~'~ used the van der Waals equation of state to 
account for the various physical (non-association) interactions. Donohue 
and coworkers q4 ~2~ used perturbation chain theory for these same inter- 
actions and obtained an equation of state in the form 

flP= ~ pi + flP ''u (2) 

in which pi is the number density of/-clusters and P~"~ is the equation of 
state for a fluid of free monomers interacting with each other through the 
reference potential. 



Association Using Cluster Partition Functions 1289 

In the third approach, Ij7~ referred to as the lattice fluid hydrogen 
bonding model (LFHB),  the physical interactions between monomers are 
represented by a lattice fluid theory, which is modified to account for 
association by considering all ways of adding association (hydrogen) bonds 
between available donor  and acceptor sites. The resulting model has been 
applied successfully to phase equilibria of associating mixtures as w e l l / "  

In this paper, we will use the cluster concept, as it occurs in the chemi- 
cal equilibrium theory, to derive a partition function in which contribu- 
tions from physical and association interactions are combined, but in a way 
different from LFHB. Based on assumptions of a nature similar to those 
made in other theories of association, we will derive all thermodynamic 
functions required to perform phase equilibrium calculations. This will turn 
out to be possible for arbitrary association schemes, and perhaps sur- 
prisingly, without the need to explicitly enumerate the possible clusters. 
The theory provides a fundamental basis for the chemical equilibrium 
theory of continuous association, which is thereby extended to arbitrary 
association schemes, i.e., no longer restricted to linear chains. We will also 
show that this theory is closely related to the other theories of association 
(TPT-1, LFHB),  through the principle of equal reactivity ~5~ which also 
provides a link with the mathematical theory of gelation/2 5.,~ The expres- 
sions for the free energy of association in these theories are in fact equiv- 
alent, except for the determination of the association constants and their 
density dependence. This equivalence is shown here more generally and 
more rigorously than before, q3~ 

2. A GENERAL T H E O R Y  OF A S S O C I A T I O N  

2.1. Descript ion of the System 

We think of our system as a mixture of different substances (monomers) 
which may form clusters through association. Monomers--free and 
bonded--are  labeled through a Roman index, i. Monomers that are not 
bonded are called free monomers. The number of monomers in the mixture 
is N;, which variables constitute, besides volume V and temperature T, all 
the degrees of freedom of the system. The corresponding mole fractions 
xi=Ni/N, where N is the total number of monomers, are referred to as 
apparent mole fractions. 

On the monomers are functional groups or association sites. These 
sites, labeled Ai, may form weak bonds with similar sites on other molecules. 
The number of different sites of a given type on a monomer is denoted as 
d(Ai). The association scheme specifies the possible bonds AiB/ tha t  may 
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form between different sites on different monomers. In a quantitative 
theory, a set of association parameters is required for each possible bond, 
basically corresponding to the enthalpy and entropy of association. 

Through formation of bonds, the monomers will combine to form 
clusters or "species." Clusters are labeled using Greek letters, which are 
supposed to represent the corresponding cluster in a unique way, also dis- 
tinguishing isomers. A free monomer is considered to be a cluster as well, 
and is referred to as Mi. The number of monomers of type M; in any 
cluster of type a is k(0c, i) and the number of bonds of type B is b(a, B). 
Note that, due to the existence of isomers, these two numbers by them- 
selves do not uniquely specify the cluster. The number of clusters of type 
cc is denoted as n~. This is also referred to as the cluster distribution. The 
equilibrium cluster distribution, i.e., the set {n~}, should be a well-defined 
(vector) function of the composition, volume, and temperature. 

For simplicity, we refer to bond formation as association throughout 
this paper, also if the active sites are on different types of monomer, where 
the term cross-association or solvation is commonly used. 

2.2. Partition Function 

We start from the canonical partition function, which should represent 
a sum over all attainable physical states. We assume now that the clusters 
are well defined, i.e., that a criterion exists with which it is possible to 
decide, in principle, when a monomer is part of a cluster. The internal 
motions of any cluster will be captured by its internal partition function, 
which is assumed not to be affected by the interactions between different 
clusters. These latter interactions are accounted for in a partition function 
for a mixture of "frozen" clusters. In the complete partition function, all 
states that lead to the same frozen cluster distribution are collected 
together, giving rise to a combinatorial factor. The process is analogous to 
that applied in lattice fluid theory, ~6~ where the first step is to put the 
molecules on the vertices of a lattice in all the possible different ways, and 
in the second step the motion of the molecules about the lattice points is 
considered. 

We first write the partition function for a fixed cluster distribution, i.e., 
we fix the set of numbers {n~}. This must then be summed over all possible 
cluster distributions, under the appropriate constraints of material balance. 
In the thermodynamic limit, the series may be replaced by the maximum 
term. 

Following this procedure, we recognize a number of different factors in 
the partition function: 
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�9 A factor { 1/l-IiN;!} to account for the nondistinguishability of the 
monomer particles. The remaining cluster counting may be treated classi- 
c a l l y - a s  opposed to quantum mechanics--i.e., both the clusters and the 
association sites on them are to be treated as distinguishable. 

�9 A factor for the number of ways to select the monomeric units to 
supply the material to build all the clusters. This number may be computed 
by first ordering all sets of monomers which may be done in YIi N;! ways. 
In each set, assign n~ groups of k(cc, i) monomers to the clusters of type e. 
Any permutation of monomers within each group will not lead to a new 
arrangement. Also, any permutation of complete sets of monomers making 
up a cluster will not lead to a new arrangement. We have to divide by the 
numbers of these various types of permutations. We arrive at 

1 1 

�9 For  each cluster c~, a factor W~, for the number of ways the cluster 
may be built from its building blocks, where all the monomers and all the 
association sites are to be considered distinguishable. 

�9 For each cluster c~, a factor representing its internal partition func- 
tion o9~; o9~ is a product of contributions from rotational and vibrational 
modes. 

�9 A configurational integral for a fixed cluster distribution. 

Putting all the factors together, we obtain for the complete partition 
function 

D =  max - -  -"/k"rdr{n~} (4) 
{nalm.b} ha!  

where in s~ we combined contributions from the internal partition func- 
tions and from the combinatorial factors: 

o~w~ (5) 
s~ 1-lik(o~, i)! 

As indicated before, to compute the actual value of the partition function, 
the maximum must be taken over all possible cluster distributions {n~}, 
satisfying the conditions of material balance (m.b) 

Y" n~k(i, o~) = Ni (6) 
cr 

822/87/5-6-21 
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Nr is an abbreviation for the total number of clusters, 

N~=~.n~, (7) 

The factor V N~ was separated out in Eq. (4), so that the configurational 
integral that appears between brackets in the partition function corre- 
sponds to the residual Helmholtz free energy for the mixture of frozen 
clusters. If the clusters would have no physical interactions, that factor 
would be unity. So, we may rewrite the partition function as follows: 

(Vs~)"~ ( Ar~'~(V, T, {n~} )) 
= max ~ - - e x p  (8) 

{hal m.b } n~! RT 

where the residual Helmholtz free energy is defined as the difference of the 
actual value and the value in the ideal gas state at the same volume V and 
temperature T, 

2r~"(T, V, {n~})=2(T,  V, {n~})-.4~g'(T, V, {n~}) (9) 

We may view this way of writing the partition function as one way of 
separating the association interactions from the cluster-cluster interactions. 
The justification of this should come from the different time and length 
scales on which the various phenomena take place. Apart from this, the 
theory is still very general. In the next sections, we will make a connection 
with both Wertheim's theory (TPT-1) and with the existing chemical 
theory of association, but to be able to do this we need to make further 
approximations. 

2.3. Basic Assumptions and Approximations 

We now list the set of assumptions that will put the theory into a form 
that can be applied practically in the computation of phase properties and 
equilibria for associating systems. These assumptions are: 

1. Monomers of a given type contribute equally to the ideal-gas free 
energy of any cluster containing them. 

2. Association bonds of a given type contribute equally to the ideal- 
gas free energy for any cluster in which they are present. 

3. The physical interactions, excluding association, between the N c 
clusters {n~} may be represented by a residual free energy function of the 
form 

r V, {n~} )=RTF(N~, Q, V, T) (10) 
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where the quantities Q = (Q i, Q2,...) depend only on composition, i.e., { n~} 
and temperature, but not on volume. One may think of these as equation- 
of-state parameters. The precise form of the function F is immaterial, as 
long as it has the mathematical properties of an extensive, residual function. 

4. The composition dependence of the equation-of-state parameters 
is through linear mixing rules: 

Ql=~ ql~n~, (11) 

5. The pure cluster parameters q~ are equal to the sum of the con- 
tributions from the monomeric units. 

q/~ = ~ k(~, i) qL M, (12) 
i 

6. The clusters contain no cycles. This is not an independent assump- 
tion; it can be derived from the other ones, at least for finite (microscopic) 
clusters, as explained in the next section. 

Assumptions 1, 2, and 5 are consequences of the group contribution 
concept/l~ Assumptions 1 and 2 imply that any cluster internal partition 
function can be written as a product of factors 

~ = H r176 I-[ (13) 
i B 

The B-sum is over all possible bonds. The parameter PB corresponds to an 
intrinsic probability of bond formation for bonds of the type B. 

The assumption of linear mixing rules, which is also made in the 
development of Heidemann and Prausnitz, 181 is motivated by the chemical 
similarity of the clusters. Although the form of the equation of state is not 
important, the mixing rules are essential in the development. Later, we 
shall show that it will still be possible to introduce binary interaction 
parameters to account for the chemical differences between different 
monomers, albeit in a nonrigorous way. 

A consequence of assumptions 4 and 5 is that the equation-of-state 
parameters Q depend on the monomer amounts only, i.e., 

Qi = ~ NiqL M, (14) 
i 

This implies that these parameters do not depend on the detailed cluster 
distribution. They can be computed on the basis of the apparent mole 
numbers alone. 
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In order to be able to perform computations, we need to derive an 
expression for the free energy of the full, associating system. This we will 
do in three steps: first, we apply the condition of equilibrium to obtain an 
analytical expression for the cluster distribution; second, we use the 
principle of equal reactivity to determine the parameters in that expression; 
third, we substitute the result back into the partition function and compute 
the free energy by taking the logarithm. 

2.4. The cluster Distribution in Equilibrium 

In order to obtain the detailed cluster distribution, we must impose 
the condition for the maximum term, under the constraints of material 
balance, Eq. (6). There is one such constraint for each type of monomer. 
A convenient way to do this is to apply Lagrange's method, introducing a 
function 

(15) 

The quantities 2; are Lagrange multipliers. If we differentiate ~- with 
respect to these quantities, we recover the constraints. Therefore, we may 
determine the maximum term by setting the derivative of o~ with respect 
to each n~ to zero. Using the full partition function and applying Stirling's 
formula to ln(n~!), we obtain the condition 

~ _ ln ( VS~) OF ON c OF OQ; 
\ n ~ /  OUcOn ~ ~OQ;On~+~i2;k(~ (16) 

The term involving the derivatives of F with respect to the equation-of- 
state parameters can be worked out further, making use of assumptions 4 
and 5 of the previous section. The result is a sum over all monomer types i, 
in which each term is proportional to Z ,  k(0q i). These terms may simply 
be absorbed into the terms containing the Lagrange multipliers, leading to 
a mere redefinition (indicated by a prime below) of these multipliers. We 
obtain 

n~ = (V~s~)  l-[ ea;kl" ;I (17) 
i 

where ~ is defined through the relation 

_(OF N  O, V, r) 
- -  I n  ~ - J \ OUo / Q. K T  

(18) 
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The next step is to substitute the expression for s~, Eq. (5) into Eq. (17), 
using Eq. (.13) for the pure cluster internal partition functions. We combine 
each Lagrange multiplier with a monomer internal partition function into 
a new quantity z,., 

zi= ogM e ~; (19) 

to yield 

zk(~. i )  

n~ = ( V W ~ )  I-I P ~  ~ I-I (20) 
- s  i k ( ~ ,  i)! 

B 

Note that n~ occurs also on the right-hand side, implicitly via the dependence 
of @ and z; on Arc. The natural next step would be to determine the values 
of the quantities z; by imposing all the material balance constraints. This, 
however, leads to infinite sums that can be evaluated in closed form only for 
special cases, such as, for example, the case of continuous linear associa- 
tion. Is~ We will proceed in a different way, and derive a closed set of equations 
which completely fixes the cluster distribution, in the next section. 

2.5. Application of the Principle of Equal Reactivity 

Under the assumptions made, the formation of one particular bond of 
type B is accompanied by a weight factor Pn/ (VN)  in the canonical dis- 
tribution. Apart from the monomers and the association sites involved in 
the bonding, this factor is independent of any specific cluster property. This 
implies that the principle of  equal reactivity ~5~ should hold, which states that 
the probability of bond formation between any two sites is independent of 
the actual shape and size of the particular clusters on which they lie. This 
enables us to express the cluster size distribution in an alternate way, in 
terms of the fractions XA,, of association sites of type Ai that are unbonded. 
Applying the principle of equal reactivity to monomers and dimers, we will 
be able to determine the parameters in the cluster distribution. 

A consequence of the principle of equal reactivity is that the only 
(finite) clusters, built from a given set of monomers, that will have a finite 
probability of formation are those that have the least number of bonds. 
These are the tree-shaped clusters, with no cycles. The number of other 
types of clusters will vanish in the thermodynamic limit, since the forma- 
tion probability for each additional bond must be inversely proportional to 
the size of the system. 
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The number of free monomers of type M i must be equal to the number 
of monomeric units of that type, times the probability that all association 
sites on a given one are unbonded, i.e., 

r/M,= Ni I-I Xa~A'~ (21) Ai 
Ai~ M i 

The product is over all types of association sites on the monomers. This 
number of free monomers must be equal to the value obtained from 
Eq. (20) for the same type of monomer. Equating the two yields a relation 
between the parameters zl and the fractions of association sites that are 
unbonded 

Ni zi= V@ I-I xa(A')A, (22) 
A~E: M i 

Next we consider a dimer, consisting of two monomeric units M~ and M.i, 
connected through a bond of type A~B/. We denote this particular dimer as 
"2." The idea is to compute the number of such dimers in two different 
ways. 

As for the monomers, we apply a probabilistic argument. The number 
of dimers n_, must equal the number of monomeric units Ni times the prob- 
ability .r that any such monomeric unit is part of a dimer of the indicated 
type. This latter probability can be determined as the product of condi- 
tional probabilities, 

= (Number of ways d(A~) to select an At site on monomer M~) 

x (Probability that all sites except the selected A; are unbonded) 

x (Probability that the selected Ai site is bonded) 

x (Probability p(Ai, Bj) that the selected, 

bonded Ai site is bonded to a 13./. site) 

x (Probability that the remaining B/sites are unbonded) 

Combination of these factors gives 

(23) 

H x",,'?;' H x",";> n 2 = N ' d C A ' ) p ( A " B J ) \ ~  A;+Mi B)+Mj I]; 

The products occurring in this expression are over all types of sites. 

(24) 
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As before, we equate this to the value obtained from Eq. (20) for the 
same type. of dimer. We note that the combinatorial factor W~ is equal to 
the product of d(Aj) and d(Bj). If i and j correspond to different types of 
monomers, Eq. (20) gives 

n2 = V@ d(A/) d(Bi) P(A;B/) z i z  i (25) 

Using the expression obtained for z; in Eq. (22), we find by equating 
the two expressions for n2, after some rearrangement and cancellation of 
common factors, 

�9 = \ ~ / p ( A , ,  Bj) (26) 

This expression is also valid if i and j correspond to the same monomer, 
as the reader may verify. We sum this over all possible monomer types Mj 
and association sites B i on them; the probabilities p(A;, Bj) sum up to 
unity. After some rearrangement, we obtain a system of equations for the 
fractions of association sites that are unbonded, 

1 
XA, -- (27) 

1 + (V~) - '  Y'-i NJ Zsj d(Bi) P(A;Bj) Xa, 

This is a closed set of equations in the unknowns XA,. It is identical to the 
equation appearing in Wertheim's theory (TPT-1) for the same quantities, 
except for the density-dependent association constants, which are related 
here to the cluster internal partition functions and to the residual free 
energy function F representing the cluster-cluster interactions. For certain 
simple association schemes, Eq. (27) may be solved in closed form, but 
generally a numerical procedure is required. Through the parameters z;, 
the solution then completely fixes the cluster distribution. 

2.6. Thermodynamic  Functions 
o 

2.6.1. Helmhol tz  Free Energy. We are now in the position to 
compute the Helmholtz free energy for the complete system, and from that, 
all thermodynamic functions. To do this, we substitute Eq. (10) into the 
expression for the partition function (8) and take the logarithm to obtain 

,nO:  ,28, 
R T  
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The next step is to substitute the expression for the cluster distribution (20) 
into the argument of the logarithm and use the material balance con- 
straints, Eqs. (6) and (7). This leads to 

A 
RT = -~" Ni ln(~OM') + ~ N, In z i + F-- Arc + Arc In 

i i 

Next, we use the expressions for zi, Eq. (22), and ~,  Eq. (18) to get 

A _ ~ N ~ { I n ( ~ ) + A , ~ M d ( A , ) l n ( X A , ) } + F _ N ~ + ( N _ N r  
RT 

(29) 

OF 
ON~ 

(30) 

All quantities in this formula, except the number of clusters N~, can be com- 
puted using equations given earlier. We still need to find a relation between 
Arc and the state variables. This is achieved by realizing that, for a system 
of clusters without cycles, the total number of clusters is equal to the total 
number of monomers minus the total number of bonds, Nc = N -  N b. The 
total number of bonds Nb in turn must be equal to half the total number 
of bonded association sites, since each bond involves two such sites. This 
leads to 

N~ 1 
- ~ = l - - ~ x j  ~ d(Aj)(1-XA) (31) 

j A j~  M i 

Thus the value of total number of clusters Arc may be computed from the 
solution of Eq. (27). 

Note that the combinatorial factors W, do not appear in the final 
result for the free energy, which is fortunate, since in general they cannot 
be computed analytically. It is not needed even to enumerate the clusters. 
However, some care is required when applying Eq. (31). If the monomers 
contain more than two functional groups, then it is possible that at a finite 
value of the density one cluster of macroscopic size will form. This "sol-gel" 
phase transition is predicted by the mathematical theory of gelatio# 2"5" 9~ 
and it occurs if the numbers W~ grow fast enough with increasing cluster 
size. Beyond the gelation threshold, the assumption that the clusters have 
no cycles cannot hold, and therefore Eq. (31) may not be applied. 

Known results of chemical theory correspond to special cases of Eq. (30). 
For example, for APACT, ~3' ~2~ where linear chains are considered, Eq. (27) 
can be solved in closed form. The mixing rules in this model are such that 
F does not explicitly depend on N c, which leads to an equation-of-state of 
the form of Eq. (2). 
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2.6.2. Equat ion  of State. We derive the equation of state by 
differentiating, as usual, the free energy with respect to volume, keeping T 
and {N~} constant. We do not use the final expression for the free energy, 
but go back one stage, to Eq. 29. We will use the following auxiliary rela- 
tion for the derivative of No: 

(ONc'~ =Nc(Oln_(VN)~ --N /Olnzi\ 
~ OV IIINiI.T OP JlNjI,  T NjI, T 

which relation is obtained by substituting Eq. (20) into the definition of N~ 
performing the differentiation under the summation sign, and applying the 
material balance constraints, Eq. (6). Using this relation in the derivative 
of the free energy (29), we find that the terms involving the parameters z; 
cancel, and we obtain 

r +  (33) RT V ~ { N i l  ' ~ Q,V.T~kOVJINyi. T 

The last two terms may be combined to yield the final result for the equa- 
tion of state 

(34) RT V tOV) N,, Q, r 

This result is both simple and appealing. Observe that the form of the equa- 
tion of state is equal to that of a frozen system of clusters without association. 
For the full, associating system, N c will, however, vary with temperature 
and density, and we have given closed sets of equations governing this 
dependence. The result is consistent with other theories when applied to 
corresponding examples, but it is more general. Note that to compute the 
pressure, it is not needed to compute density derivatives of XA. 

2.6.3. Chemica l  Potent ia ls .  The computation of the chemical 
potential of component i is completely analogous to the derivation of the 
equation of state. We merely state the result here: 

RTPi -ln (v~mM.Ni ) ~ ( OF N~ ~,~,iOQ' + ~-~-+ Y' d(A,)In XA, (35) 
�9 A i E M i 

As should be the case, this value is equal to 2i, the Lagrange multiplier 
associated with conservation of monomers Mi. This may be explicitly 
verified on the basis of Eqs. (16)-(19). Note that to compute the chemical 
potentials--or the fugacity coefficients--it is not needed to compute density 
derivatives and primitives of XA. 
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2.6.4. Binary Interaction Parameters. The theory can be used 
as a basis for modelling, which involves, besides a specific choice for the 
residual function F, the identification of all the parameters in the theory 
and their determination from experimental data. It is well known (~8) that in 
a practical engineering model one needs to introduce binary interaction 
parameters in the equation-of-state parameters to account for nonconfor- 
mal interactions between substances, caused by differences in size, shape, 
and polarity, even for systems where association does not play a role. Our 
assumption of linear mixing rules seems to preclude this possibility. 

There is, however, a way to introduce binary interaction coefficients 
with some foundation. They are typically required in an energy parameter, 
as follows: 

a =  ~ Z n ~ n z ~ ( 1  -k~z) (36) 

In mixtures of many chemically similar components, the majority of the inter- 
action parameters required will be zero or very small. If they were exactly 
zero, assumption 4 of Section 2.3 would hold, and a could be expressed in 
terms of monomer properties alone. So it is not unreasonable that a may be 
approximated using fewer interaction parameters: 

a = Z ~  N,N/v/~MaM, ( 1 -  kM. M~) 
i j 

(37) 

Note that for systems of inert (nonassociating) components, this reduces to 
the van der Waals classical mixing rule which for many of those systems 
works adequately. 

Additional support to this idea is provided by the truncated spectral 
method, described in ref. 10. Using this method, using the property that the 
interaction parameters in Eq. (36) are generally small, the quadratic mixing 
rule can be effectively transformed to a small number of linear mixing rules, 
so that the whole theory described here may be applied. At the end, the trans- 
formation is applied in the reverse direction, leading to the approximation 
Eq. (37). 

If a simple model such as the Soave-Redlich Kwong equation of 
state ~22~ is used to model binary systems where association plays a role, a 
strong composition dependence has to be introduced in binary interaction 
parameters such as appear in Eq. (37) to be able to fit the data, and 
experience shows that this is possible with limited success only. If associa- 
tion is accounted for explicitly, on the other hand, a small constant interac- 
tion parameter should suffice, since the (strong) composition dependence 
caused by association is already present in the model, here through 
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Eq. (27). Examples showing this clearly can be found for example, in refs. 
14, 21, and 25, where an equation of state is used that consists of a very 
simple "physical" part combined with, essentially, Wertheim's equation, 
Eq.(27). The authors show that phase diagrams of binaries involving 
water, hydrocarbons, and alcohols can be represented using a single, binary 
interaction parameter, and that it is possible to represent vapor-liquid and 
liquid-liquid data simultaneously using a single set of parameters. 

3. RELATION TO EXISTING THEORIES 

In order to establish the validity and the value of the results of this 
paper we want to make a link with existing theories. We will show that and 
why the theory is consistent with the three types of theories mentioned in 
the introduction. Our theory may be viewed as a bridge between these 
other theories, and also as an extension of the current chemical theory of 
association to include arbitrary association schemes. 

3.1. Chemical Theory 

The results of this paper are equivalent to the results of Heidemann 
and Prausnitz, c8~ for the cases to which these latter results can be applied, 
but the theory is not restricted to specific association schemes such as 
linear chains. This can be seen by writing the left-hand side of Eq. (16) as 

l Vs \ -~~ 

" ~" P~ ~ .2 ,k(mi)  38) ~, = In ~ j ~ - )  + ~--~ + ( 
i 

where p~" is the residual chemical potential of the cluster ~, as computed 
from the residual free energy for a mixture of "frozen" clusters. Note that 
this chemical potential does not contain contributions from association. 
Now consider a "virtual reaction" ~ + fl ~ ), by which two clusters produce 
a third one. This corresponds to a change 

" f f , + ~ - ~ . = l n  Vs~Vs/~n~. p ,  ~/~ + = 0  (39) 
Vs:.n~n[~ / R T  R T  

which must be zero due to Eq. (16). This equation may be rewritten in 
terms of fugacity coefficients and cluster mole fractions x ,  = n, /N~ as 

~.X~, S z 
(40) 
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This equilibrium condition is the starting point of the chemical theory of 
association. Note that reactions between arbitrary clusters, satisfying the 
conditions of material balance, are allowed. The effective equilibrium con- 
stant is expressed in terms of the number s~, which contain the pertinent 
internal partition functions and the combinatorial factors. The cluster dis- 
tribution Eq. (20) is the solution to the infinite set of equations (40). 

3.2. First Order Perturbation Theory 

The correspondence with Wertheim's theory (TPT-1) becomes clear 
from a comparison of the TPT-1 equations with Eq. (27) for the fractions of 
sites that are unbonded and Eq. (30) for the free energy. The two sets of equa- 
tions are equivalent, except for the determination of the density-dependent 
association parameters, which are related to integrals involving the inter- 
molecular potential in Wertheim's theory. 

We note that the form of Eq. (27) can be derived in a very simple way 
from the principle of equal reactivity alone, as follows. This principle 
implies the existence of a type of chemical equilibrium, not between species 
but between free and bonded pairs of association sites, 

A; + Bj ~ A;B / (41) 

In terms of number concentrations, denoted by square brackets, an equi- 
librium equation may be written for each pair of association sites capable 
of bonding 

[ A ; B j ]  _ K(A;Bj) (42) 
[A,oIEB,  o] 

in which the equilibrium constant K(A;Bj) is specific for the types of 
association sites involved, but does not depend on their concentrations. 
The notation A;o denotes an unbonded association site of the type A;. We 
now introduce theft'action of A; sites bonded to sites of type B/, X(A;, By). 
The corresponding concentrations may be expressed then as 

[A,Bi] =x;pX(A,, By) and [Am] =xipXA, (43) 

Substitution of these expressions into Eq. (42) and multiplication of 
both sides by a common factor yields 

X(A,, Bj)= pxjK(A,Bj) XAXB, (44) 
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If we sum both sides of this equation over all possible monomeric units j 
and association sites Bj on them and use the condition of overall conserva- 
tion of Ai sites 

Z ~ X(A,, Bj)= 1 --XA, (45) 
j B, 

we obtain, after simple rearrangement, Eq. (27). 

3.3. Latt ice Fluid Hydrogen Bonding Model  

In the lattice fluid hydrogen bonding model (LFHB) c ~71 one also starts 
from the canonical partition function, in which the contributions from the 
association interactions are separated from the remaining interactions. 
Interestingly, this is applied in the reverse order compared to our approach: 
the physical interactions are accounted for first, using a lattice fluid con- 
cept; then the association interactions are added by randomly placing 
bonds between sites. In this second step, the principle of equal reactivity is 
applied implicitly. As a result, the contribution to the free energy due to 
association is equal to that in the other theories, except for the precise 
value of the (density-dependent) association constants, as we will show now. 

Panayiotou and Sanchez derived the free energy of association of the 
mixture by counting the number of ways a fixed number of bonds can be 
distributed over the functional groups. To avoid a notation overloaded 
with indices, we suppress the subscripts i and j. The equations are, however, 
valid for pure components and mixtures. The a priori partition function can 
then be written as 

NA ! Ns!  (pAB/V) N'n 

. . . . .  ~]--IgAo__~.r-[gBo___~.l-[r [Al.xtA.txB " t  NAn~ 
(46) 

where a formal distinction between acceptor (A) and donor (B) sites is 
made. NA is the total number of (acceptor) sites of type A, and NAo the 
number of these that are not bonded (m.m. for the donor sites). NAB is the 
number of AB bonds. The quantity PA8 is related to the probability of 
bond formation. It is divided by the total volume, which expresses the 
probability of encounter in an ideal gas. In a real fluid, PAB may itself 
depend more weakly on density. 

At given values of the external conditions of total volume, temperature, 
and composition (number of NA and NB sites), the actual value of the 
partition function is to be obtained from maximization with respect to the 
free variables, viz. NA0, NB0 and NAB, under the appropriate constraints. 
This maximization procedure may be carried out quite simply by comparing 
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the value of [2 ''~~ before and after a particular "virtual reaction" of the 
kind displayed in Eq. (41), which must be equal at the maximum. The 
following condition is obtained: 

NAB PAB 
NAoNso V 

(47) 

which is equivalent to Eq. (42) if the identification K ( A B )  = PAB is made. 
From what we showed earlier in Section 3.2, Eq. (47) is then equivalent to 
Eq. (27). 

The free energy of association is obtained from the standard relation 

A aSSOC 1 
In ~ ...... (48) 

N k  T N 

This can be worked out, using Stirling's identity again, and applying the 
conditions expressed in Eq. (46) together with the conservation laws for 
association sites 

N~ ~ = NA -- NAo, ~ NA B = N s  -- Nso (49) 
B A 

After some algebra, a rather simple form for the free energy of association 
is obtained, 

A ...... U j  / U j o  \ 1 Nj ( Njo ~ (50) 
Nk T = ~. -N ln ~-~j ) +2 ~j -N 1 Nj / 

J 

where the summation is over all association sites J (rather than types of 
sites), donor and acceptor. Remembering that we suppressed the indices i, 
indicating monomeric units, it is easy to see that the contribution from 
association to the free energy is equal to that in the other theories except 
for the values of the equilibrium constants. To make the connection with 
Eq. (30), in the latter equation F must be set to zero, Eq. (31) substituted, 
and the ideal gas reference terms removed. The result is identical to Eq. (50). 

4. C O N C L U S I O N  

We have presented a systematic approach to associating mixtures, 
which, while being similar in spirit to the hydrogen bonding lattice theory 
of Panayiotou and Sanchez, ~ ~vj provides a basis to and an extension of the 
chemical theory of continuous association as formulated by Heidemann 
and Prausnitz tSI and at the same time constitutes a bridge between these 
theories and perturbation theory, TPT-1. 
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A strong and practical point is that the method may be applied for 
arbitrary continuous association schemes, i.e., there may be different 
monomers with an arbitrary number of association sites on them. The 
association scheme is accounted for in a general way through Eq. (27) so 
that it is not necessary to analyze each case separately, such as in ref. 7 and 
17. The assumptions that had to be made to allow the development were 
chosen such as to make the principle of reactivity ~SJ valid. In the case where 
the cluster-cluster interactions are ideal, the probability of bond formation 
is independent of the clusters on which the participating active sites are. 
The result of the physical interactions is that these probabilities change, but 
all with the same factor, so that they are still independent of the clusters. 
This is a result of the special mixing and combining rules used. 

It is this same principle of equal reactivity that links the various 
theories. The equivalence between these theories in appropriate limits has 
been discussed before 131 but not to the same generality. In ref. 3 it was 
observed that equivalent or similar expressions result for a number of 
corresponding cases. In ref. 7 the question was raised if the equivalence 
would be valid also for the case of multifunctional association. We have 
now shown that the answer is affirmative, that it includes mixtures, associa- 
tion, and solvation, and that the equivalence becomes exact in the limit of 
ideal cluster-cluster interactions. This, of course, also means that the 
chemical potentials must have the same value, despite the apparently very 
different expressions. 17~ 

We have displayed systematically what the assumptions and the 
various steps are. The canonical partition function, Eq. (4), which captures 
the phenomenon of association is very general. It will be interesting to 
investigate which of the subsequent assumptions may be relaxed or 
removed without losing the capability of computation. Of course, the 
assumptions are very crude and cannot rigorously hold for real fluids. 
However, the success of existing equation of state theories of (continuous) 
associationtl. 3.8. ~7.20~ shows that this type of theory can be applied with 
success to the problem of representation of phase equilibria and corre- 
sponding data reduction. 

We believe that the theory provides a framework for engineering 
modeling w6rk. Our suggestion for the inclusion of binary interaction 
parameters, in fact in the standard way, should increase the applicability to 
practical problems, as is seen in examples in the literature. ~2~'25~ The fact 
that the association scheme is accounted for by a set of equations in generic 
form, Eq. (27) will facilitate robust and generic implementation in com- 
puter programs. Cumbersome density derivatives and integrals applied to 
the association terms, which seem to be required in the original formula- 
tion of the chemical theory, are not needed. 
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